ML notes personal 4
Gradient Boosting
How it works?
step 1 : model 1 - it always returns the avg value of output col, pred1
step 2 : calculate residual 1 -> predicted-actual = res1
step 3 : make a decision tree iq, cgpa and res1
step 4 : make pred2
step 5 : res2 = actual - (pred1 + LR*pred2)
step 6 : again make dt based on iq, cgpa, res2, and repeat till res is nearly = 0
A. Adaboost vs B.Gradient Boost
- A - max depth of decision tree=1
- B - max leaf node - (8 to 32)
Comments
Post a Comment